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ABSTRACT
Machine learning (ML) is increasingly being used as a key com-
ponent of most software systems, yet serious concerns have been
raised about the fairness of ML predictions. Researchers have been
proposing novel methods to support the development of fair ma-
chine learning solutions. Nonetheless, most of them can only be
used in late development stages, e.g., during model training, while
there is a lack of methods that may provide practitioners with early
fairness analytics enabling the treatment of fairness throughout the
development lifecycle. This paper proposes ReFair, a novel context-
aware requirements engineering framework that allows to classify
sensitive features from User Stories. By exploiting natural language
processing and word embedding techniques, our framework first
identifies both the use case domain and the machine learning task
to be performed in the system being developed; afterward, it rec-
ommends which are the context-specific sensitive features to be
considered during the implementation. We assess the capabilities
of ReFair by experimenting it against a synthetic dataset—which
we built as part of our research—composed of 12,401 User Stories
related to 34 application domains. Our findings showcase the high
accuracy of ReFair, other than highlighting its current limitations.
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1 INTRODUCTION
In today’s software production, data-driven machine learning (ML)
algorithms are more and more employed to support decision-
making activities performed by individuals and companies [65],
other than to automate repetitive tasks, reducing human’s work-
load [51]. Successful applications have been showcased in multiple
domains [23] like loan management [46], hiring decisions [43],
healthcare [2], biology [56], and more.

Despite the benefits brought by ML, researchers have been re-
porting on the implications that those algorithms may have on
ethics and fairness [38]: the reliance on historical data may lead
an ML algorithm to gather biased knowledge about the relations
ruling a phenomenon, which might lead to unfair predictions and
recommendations that, in turn, might reiterate discrimination and
injustice [3]. As such, the definition of methods and tools able to re-
duce risks due to ethical concerns represent a key challenge [3, 18].

Recently, the Software Engineering for Artificial Intelligence
(SE4AI) research community has been actively working on this
matter, arguing the need for novel engineering processes to treat
fairness throughout the software lifecycle. However, operationaliz-
ing this need is complex because of the intrinsic nature of fairness.
On the one hand, fairness strictly depends on the application do-
main and the specific task an ML system is designed for [39, 48],
e.g., a feature may be sensitive in one context and not in another.
On the other hand, fairness represents a multi-faceted aspect, and,
indeed, multiple definitions targeting various perspectives of soft-
ware fairness have been proposed in literature [60].

At the current stage, most of the existing approaches focus on
avoiding discrimination from data. For instance, Chakraborty et
al. [14] proposed Fair-SMOTE, an oversampling algorithm able
to rebalance training data according to sensitive attribute groups.
On a similar note, other researchers attempted to analyze the best
data preprocessing actions to keep fairness under control [6], how
to diversify data to reduce fairness concerns [44], and optimize
training data to balance fairness and accuracy [17, 29]. At the same
time, automated fairness testing procedures have been defined [25].

Recognizing these advances, Soremekun et al. [54] pointed out
the need for novel requirements engineering techniques that may
let practitioners be aware of sensitive features since the project
inception. Those instruments may have a fundamental impact on
practice: being able to provide early recommendations on sensi-
tive features, they may inform the entire ML engineering lifecycle,
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possibly making all the involved stakeholders aware of the most
suitable bias mitigation strategies to put in place to reduce risks
due to unfairness. In addition, the outcome of such a recommender
may complement existing bias mitigation approaches, empowering
the whole ML pipeline by making it more fairness-aware.

In this paper, we perform the first step toward this objective and
propose ReFair, an automated requirements engineering frame-
work that employs natural language processing (NLP) and word
embedding techniques to classify sensitive features from User Sto-
ries (USs).1 We design ReFair to be context-aware. As such, it can
classify application domains andML tasks to be implemented before
recommending the sensitive features to consider, hence addressing
the needs brought by the intrinsic nature of software fairness.

To experiment with ReFair, we create a synthetic dataset of
12,401 ML-related USs pertaining to 34 different application do-
mains. The results of our study showcase the capabilities of ReFair,
which can (1) classify application domain and ML tasks within the
USs with an F1-score of 97% and 90%, respectively, and (2) recom-
mend sensitive features with high precision.

To sum up, our paper provides three key contributions:
(1) ReFair, a novel context-aware automated framework to sup-

port fairness requirements engineering;
(2) the empirical validation of ReFair, which showcase the ca-

pabilities of our framework;
(3) a publicly available replication package [1] which includes
(a) the implementation of ReFair,
(b) the dataset and scripts used to assess the framework,
(c) a technical report discussing the additional analyses con-

ducted to assess its capabilities.
Section 2 discusses the related literature; Section 3 describes the

construction of the synthetic dataset; our framework is presented in
Section 4; its evaluation is shown in Section 5; Section 6 elaborates
the limitations of the work; Section 7 outlines our future research.

2 BACKGROUND AND RELATEDWORK
Verma and Rubin [60] grouped fairness definitions based on the
(1) probability to make a correct prediction among different sensi-
tive groups, e.g., Statistical Parity, (2) similarity-based prediction
relations among different individuals, e.g., Fairness through Un-
awareness, and (3) causal relation among features and outcomes e.g.,
Counterfactual Fairness. Mehrabi et al. [39] mapped fairness defini-
tions onto (1) group-based discrimination avoidance, e.g., Equalize
Odds, and (2) individual reasoning prediction monitoring, e.g., Fair-
ness through awareness. Based on these definitions, most previous
works defined bias mitigation strategies by preprocessing or manip-
ulating training data. For instance, Biswas and Rajan [6] compared
37 different pre-processing pipelines against three datasets, ver-
ifying that specific data transformations may impact fairness in
training data. Nargesian et al. [45] proposed training data augmen-
tation as a solution to limit unfairness, while Moumoulidou et al.
[44] exploited data diversity under fairness constraints, observing
how the representativeness of different data groups is key to guar-
antee fairness in data and avoiding model discrimination. On a
similar line, Chakraborty et al. [14] proposed Fair-SMOTE, a data

1The framework analyzes US titles rather than the entire structure of a US; yet,
for the sake of readability, we use the term “User Story” throughout the manuscript.

balancing algorithm able to rebalance the internal distribution of
training data according to sensitive attribute groups.

Another line of research refers to optimizingMLmodel behaviors
based on trade-offs. Hort et al. [29] proposed a mutation approach,
coined Fairea, to benchmark bias mitigation methods according
to specific fairness-accuracy trade-offs. Similarly, Chen et al.[17]
proposedMAAT, an ensemble learning approach to jointly improve
fairness and model performance metrics. Finally, Galhotra et al.
[25] introduced Themis, a test generation approach highlighting
unfairness caused in data according to specific fairness metrics and
trying to solve them by using specific resampling strategies.

Rather than focusing on data, we propose an automated require-
ments engineering approach that can classify sensitive features
from user stories. As such, our approach may complement existing
ones and inform how data preprocessing and manipulation algo-
rithms should optimize training data to reduce fairness concerns.
When focusing on requirements engineering, Soremekun et al. [54]
pointed out only a few research works aiming to assess fairness
during requirements specification and analysis. This is due to the
lack of standards and guidelines to manage ethics in requirements
engineering [5] and the fact that the analysis of multiple mutually
exclusive definitions of fairness in the same requirements specifica-
tion might be counterintuitive [10]. In addition, ethical concerns are
tightly dependent on the specific context a system should operate,
both in terms of application domain and ML task that should be
performed [23]. As proof of that, previous work [13, 24] highlighted
that different notions of fairness are difficult to optimize among
customers due to the specificity of the application domains. Our
research builds on top of the current knowledge in fairness require-
ments engineering and represents the first attempt to elicit ethical
concerns from requirements specification automatically. In partic-
ular, our work exploits recent advances in the area of automatic
classification of non-functional requirements, where techniques
based on natural language processing and word embeddings have
been shown to be effective for the classification of non-functional
attributes from user stories. For instance, Hey et al. [27] and Casillo
et al. [12] have recently showcased successful applications for the
classification of function and privacy requirements, respectively. In
addition, our work complements research in the field of artificial in-
telligence, where some preliminary efforts have been made to build
tools, e.g., Twitter post analyzers [30], able to provide analytics
on the ethical concerns within general-purpose text [11, 15, 28, 35].

3 BUILDING A DATASET OF USER STORIES
One of our work’s challenges was the identification of a dataset of
ML-enabled system’s requirements. It should have reported domain-
specific requirements of ML-enabled systems, it should have been
diverse enough to investigate software fairness in various domains,
large enough to experiment with our approach, and generic enough
not to be explicitly tailored on fairness analysis. Unfortunately, the
current literature does not offer any off-the-shelf solution. Hence,
we proceeded with the creation of a synthethic dataset, which we
built by considering (i) the contemporary requirements engineering
processes [31], (ii) the knowledge on the domains where fairness
impacts ML solutions [54], and (iii) the trustworthiness of the gen-
eration process [63]. Figure 1 overviews the generation process.
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3.1 Requirements Format Selection
Among the available standards [9, 19, 53], we focused on User Sto-
ries (USs). These represent a widely adopted instrument to describe
features of a software system from the perspective of the users
that will interact with the system being developed [31]. Require-
ments engineering processes of ML-enabled systems are typically
performed by means of USs [61]. USs enclose three main elements
[19]: (1) the actor, who is the main user interested in performing a
specific task; (2) the action, i.e., the activity to perform using the
system under development; and (3) the benefits, i.e., the advantages
the actor (and the application domain) has from acting on the envi-
ronment through the feature. Among the main advantages of using
USs, we identified the possibility to enclose as actions the specific
ML tasks that a software system should enable [34]. In addition, the
actor and benefits may typically enclose information on the domain
where the system should act, hence possibly providing insights into
the context-dependent fairness aspects to consider.

Datasets 
Ontology

Machine learning 
 Tasks Application Domains

ChatGPT
Synthetic  
User Stories 

Fairness datasets taxonomy analysis

Syntethic User Stories Dataset Generation

Machine
Learning 
Dictionary

Knowdlege Augmentation

A Novel Synthetic Dataset of Context-Specific User Stories

Figure 1: An overview of the USs Dataset Generation Process.

3.2 A Taxonomy of Fairness-Related
Application Domains and ML Tasks

The second step toward the definition of our synthetic dataset
consisted of mapping the existing knowledge concerned with the
application domains and ML tasks for which software fairness
concerns arise. This step was key in our case to inform the US
generation process, i.e., without such a systematic mapping, we
could not know for which domains and ML tasks USs should have
been generated. In particular, this was a two-step process that
included (1) the manipulation of an existing ontology describing
fairness-critical application domains and ML tasks [23]; and (2) the
augmentation of such an ontology with the specific ML techniques
able to operationalize the various ML tasks.

Mapping the Existing Knowledge. We first exploited the
OWL ontology developed by Fabris et al. [23], which maps over
250 fairness-related datasets onto the application domains and ML
tasks for which they were used and the corresponding sensitive
features representing possible causes of unfairness. To the best of
our knowledge, this represents the most updated resource available
that describes software fairness in different contexts. The ontology
was ideal for our case, as it provides information on (i) the domains
we should have considered while generating the synthetic dataset

of USs and (ii) the ML tasks that might produce fairness concerns
and that we should have further analyzed during the generation
process. To make the ontology functional to our purposes, the first
author of this article—a SE research assistant with two years of
expertise in ML, SE4AI, and ethical AI—manually converted it into
a database reporting (1) the application domains and ML tasks clas-
sified by Fabris et al. [23]; and (2) the sensitive features impacting
fairness within each of the application domains and each of the ML
tasks. Overall, the database included 34 application domains and 25
ML tasks, along with the sensitive features that impact them. We
made the converted ontology available in our online appendix [1].

Augmenting the Existing Knowledge. While the original
ontology provided us with an extensive amount of application
domains, the set of ML tasks was quite restrictive. The ontology
classified the tasks based on a high-level categorization, e.g., ML
classification or regression. However, those tasks could be imple-
mented using a variety of models and algorithms. Building a syn-
thetic dataset solely relying on such a high-level classificationmight
have negatively impacted the conclusion validity of our study.

Indeed, USs may be defined by specifying either the problem or
the solution of the ML tasks to be developed [61], for instance they
may either indicate the general classification task to be performed
(e.g., classification) or the specific technique that will be used to
implement a requirement (e.g., a Naive Bayes classifier).

To tackle this problem, we performed a data augmentation pro-
cess aiming at enlarging the set of ML tasks considered by the orig-
inal ontology. We exploited the AI dictionary proposed by Duran
Silva et al. [22]: this is a collection of 599 specific words widely used
in different artificial intelligence areas, such as machine learning
and natural language processing. This dictionary was built using ad-
vanced language models and various large knowledge datasets such
as arXiv, Dpedia,Wikipedia, and Scopus. Experts from several
universities have validated the final collection of keywords. Among
the keywords of the dictionary, 457 of them relate to ML or natural
language processing techniques, i.e., they report about learning al-
gorithms or models. The rationale behind the use of the dictionary
was that of exploiting this knowledge to link finer-grained tech-
niques to the higher-level tasks reported by the original ontology,
hence creating a comprehensive taxonomy that reports, for each
application domain, both high-level ML tasks and low-level ML
techniques that might lead to fairness-related concerns.

The mapping was manually performed by the first author of the
paper, who is referred as “the inspector” in the following. For each
of the 457 relevant ML keywords of the dictionary by Duran Silva
et al. [22], the inspector (1) verified that the keyword was actually
related to a ML or NLP technique, i.e., the keyword matched an
algorithm or model—otherwise, the keyword was discarded; and
(2) mapped the technique onto one of the 25 higher-level ML tasks.
When the inspector was unfamiliar with the specific technique
considered, online material, books, or the other paper authors could
be consulted to understand how the mapping should have been
performed, i.e., which higher-level task would have better suited
the technique. The inspector did not find cases where the mapping
could not be done: all techniques reported in the dictionary could
be successfully mapped, increasing the confidence in the choice
of relying on the work by Duran Silva et al. [22] to augment the
original ontology by Fabris et al. [23].
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The other authors of the paper then verified the consistency of
the mapping. The disagreements cases were discussed and solved
before proceeding to the next stages. As an outcome of this stage, we
could rely on a comprehensive, multi-level taxonomy that reported
the application domains where fairness concerns arise along with
the high-level ML tasks and low-level techniques that may possibly
induce the emergence of fairness issues. In addition, it is worth
remarking that—exploiting the knowledge collected through the
original ontology—those pieces of information are directly mapped
onto the specific sensitive features that may cause fairness issues: in
other terms, by design, our augmented taxonomy can be used as a
basis to create USs that actually provide insights into the application
domains and ML techniques that may typically lead ML engineers
to deal with sensitive features.

Figure 2 reports a snippet of the taxonomy, showcasing examples
of mapping between ML tasks and sensitive features and between
application domains and sensitive features. The whole taxonomy
is available in our online appendix [1].

ML Task

Regression

Clustering

Data summarization

age, ethnicity, financial status, gender, 
geography, race, sex

age, caste, gender, geography, male/female, 
race, sex, skin tone

age, author, ethnicity, gender, geography, 
race, sex, textual references to people and 
their demographics

Application 
Domain

Education

Finance & Marketing

Political Science

age, birth, category, caste, ethnicity, family, 
wealth, financial status, gender, geography, 
race, racial-ethnic group, sex

age, education, ethnicity, gender, geography, 
political affiliation (representation in different 
precincts), race, urban/rural

activity, age, gender, geography, race, sex

Figure 2: Snippet of the augmented taxonomy built.

3.3 Synthetic Generation of User Stories
The taxonomy represented the input of the final step of the synthetic
dataset generation process. To generate USs as realistic as possible,
we exploited the capabilities of large language models (LLMs) [8]
and, in particular, of ChatGPT.2 This is one of the most powerful
LLMs currently available and is based on the GPT-3.5 architecture.3
Akey challengewas represented by the so-called prompt engineering
[66], i.e., the definition of the most suitable query that would have
allowed ChatGPT to properly process the input and output USs
that would have effectivelymimicked the actions done by a software
engineer. We experimented with multiple prompts, finally coming
up with the one whose structure is reported below.

2Link to ChatGPT: https://openai.com/blog/chatgpt.
3More on GPT 3.5: https://platform.openai.com/docs/models/gpt-3-5.

Prompt employed to generate USs.
Considering the following:

[High-level machine learning task]
OR [Low-level machine learning technique]

in the field of [machine learning]
OR [natural language processing].

Can you provide me with specific user stories
for the following application domains?
[List of Relevant Application Domains]

The prompt was employed to systematically query ChatGPT
and generate a number of domain-specific USs equals to the num-
ber of ML tasks/techniques that may induce fairness-related issues,
according to the taxonomy built in the previous step. Such a pro-
cedure aimed at emphasizing the context-dependent nature of ML
fairness, putting a strong focus on domain and machine learning
task specificity that serve as the foundation of our work. The gen-
eration process was supervised, i.e., we did not blindly rely on the
USs generated by ChatGPT as these might have been unrealistic or
erroneous, affecting the overall reliability and representativeness
of the dataset. Every time a new US was generated, the first author
manually verified its consistency and degree of realism, discarding
low-quality USs. As a result of this manual validation, about 3,000
USs targeting 81 of the ML tasks originally considered in the aug-
mented taxonomy were removed, as they were deemed too specific
for generating USs with a structure and expressiveness close to the
ones produced in real-world development environments.

Overall, the dataset generation process required around 120 per-
son/hours and produced 12,401 synthetic USs related to 34 different
application domains. Upon completion of the generation process,
the second author double-checked the operations conducted by the
first author on a statistically significant sample of 375 synthetic USs
(confidence level=95%, margin of error=5% - min 373 instances) to
(i) further ensure the reliability of the produced dataset and (ii) to
assess its suitability in the subsequent experimental phases. More
specifically, the second author conducted a qualitative evaluation on
the statistically significant sample of synthetic USs which involved
a review against predefined criteria, including clarity, complete-
ness, and relevance to the anticipated experimental conditions. The
analysis revealed no inconsistencies. Our online appendix provides
access to the dataset, other than to additional reports and examples
on the dataset generation process and its validation [1].

The prompt provided to ChatGPT may generate synthetic USs
having different levels of granularity, i.e., they may specify the
solution or the problem of the ML tasks to be developed. The moti-
vation behind the choice of the granularity of the generated USs
comes from existing literature in the requirements engineering do-
main [34] that showed that the granularity of USs may largely vary
in practice. The original Cohn’s user story template [19] indeed
described a template to write user stories but it did not provide
stringent constraints on how to write them. As a consequence,
any development team is free to decide on the level of granularity
based on multiple factors like the knowledge of the domain, the
information made available by the client, etc. [37]. Our synthetic
dataset generation procedure embedded these considerations and
attempted to simulate the behavior of the largest population of
requirements engineers. As such, we kept the generation as broad
as possible, foreseeing the possibility of having a diverse set of USs.

https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-3-5
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Can you provide me with specific user stories for the
following application domains? Finance and Marketing

Sure, here is a potential user story for the application of nearest
neighbour search in the fields of finance and marketing:

As a marketer, I want to use nearest neighbor search to
identify customers with similar preferences or behaviours, so that
I can provide personalized marketing messages and improve

customer engagement.

Considering the following machine learning technique: 
nearest neighbor search in the field of machine learning.

Chat GPT

Prompt Request

(a) Example of solution-oriented US generated.

Can you provide me with specific user stories for the
following application domains? Literature

Sure, here is a potential user story for the application of
terminology extraction in the fields of literature:

As a researcher, I want to extract the key terminology from a
large corpus of academic so that I can understand the main

concepts and trends in my fields.

Considering the following machine learning technique: 
terminology extraction in the field of machine learning.

Chat GPT

Prompt Request

(b) Example of problem-oriented US generated.

Figure 3: Examples of synthetic USs Generation.

To showcase the levels of granularity of the USs in our dataset,
let consider the two examples depicted in Figures 3a and 3b. In both
cases, the US pattern defined by Cohn [19] is fully met. The former
describes a solution-oriented US concerned with the application
domain named “Finance and Marketing”, where a rather specific ML
task is specified, i.e., “Nearest Neighbor Search”. The latter, instead,
refrains from specifying a ML task and revolves around the problem
of “terminology extraction”, which can be later implemented using
different methods. In this instance, the “what” conveyed is the
user’s desire to “extract the key terminology from a large corpus of
academic” , maintaining a high-level abstraction of the ML task.

3.4 Synthetic Dataset Validation
The supervised dataset generation process ensured that the syn-
thetic USs closely resembled the ones that a software engineer
would produce, as the internal assessments suggested. This valida-
tion instilled a high level of confidence in the dataset’s reliability.
Nevertheless, to further safeguard against potential subjectivity
in the internal inspection, we undertook an additional and com-
prehensive validation of the synthetic dataset. In particular, we
let practitioners assess the USs’s quality in our dataset. First, we
extracted a statistically significant different sample than the one
used for the internal inspection of 375 synthetic USs (confidence
level=95%, margin of error=5% - min 373 instances). Second, we
randomly split the 375 USs into 75 groups, each containing five USs.
Third, we designed 75 online surveys - one for each USs group - to
(1) present each of the five USs and inquire the respondents about

comprehensibility, i.e., the degree to which the US is understandable,
realism, i.e., the degree to which the US is written as a real user
story, and actionability, i.e., the degree to which the US can be used
to drive the development of a ML-enabled project (the respondents
judged these properties for each proposed US through a 5-point Lik-
ert scale [4]); and (2) ask respondents to provide feedback on how
to improve the US deemed unrealistic. To avoid respondents being
biased, in either positive or negative fashion, we did not reveal the
synthetic nature of the USs under evaluation. We administered the
survey through Prolific4, following the guidelines by Reid et al.
[52] to prevent invalid responses, and applying quality assessment
to discard unreliable responses. We cross-validated two reports for
each USs group, thus involving 150 practitioners with experience
in software design and ML. The results of the surveys corroborated
those of the internal validation: the involved practitioners (i) gave
the USs very high scores for all indicators, achieving at least ≈4 on
the Likert scale; (ii) provided recommendations on how 46 unique
USs (12%) could be improved. These recommendations were minor
and addressed ambiguous terminology affecting the readability of
the USs, not altering their core structure or intent. As such, we did
not require to propagate the changes to the other USs in the sample
nor to the entire dataset. The external validation is more detailed
in the technical report released in our online appendix [1].

REFair: A Novel Automated Framework for Fairness Requirements Analysis

  

ML Tasks' 
 Sensitive Features 

User Story

 Pre-Processing

 Domain Detection

 ML Tasks Detection

Domain

ML Tasks

Domain's  
Sensitive Features 

Classification Analysis Sensitive Features Extraction

...
Word 
Embeddings

Sensitive Features
suggested for Story's

Development
Set Intersection

Figure 4: ReFair: An overview of the proposed approach.

4 THE REFAIR FRAMEWORK
The key idea behind ReFair is to analyze USs of ML-enabled sys-
tems with the aim of (1) classifying the application domain of the
system being developed; (2) classifying the ML task(s) that will be
employed to implement the US; and (3) mapping those pieces of
information onto the specific sensitive features to account when
working under the classified application domain and ML task.

As such, ReFair supports the requirements engineer by provid-
ing recommendations that may inform the follow-up development
activities of the potential fairness concerns to take into account. We
are aware that other external factors, e.g., laws and regulations, may
influence the identification of sensitive features. On the one hand,
ReFair is designed to work with software engineering artifacts,
i.e., User Stories, rather than with elements that may be hardly

4The Prolific administration platform: https://www.prolific.co/

https://www.prolific.co/
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extracted because of their tight relation with the specific customs
or regulations of the society where a system is being developed.
On the other hand, our framework does not aim at replacing the
requirements engineer but provide insights that may be further
elaborated. From a technical standpoint, ReFair exploits the base
ontology built in Section 3 to learn how to detect sensitive features
based on application domains and ML tasks, and is fed with the set
of synthetic USs coming from the dataset generation process.

We made ReFair working with the base ontology rather than
with the augmented taxonomy as we aimed at designing a gener-
alized framework that could not limit itself to the analysis of the
currently existing ML techniques, but that would rather allow the
classification of a set of general high-level tasks that can be adapted
to multiple application domains, hence recommending sensitive fea-
tures independently from the specific ML techniques that engineers
will use. Such a generality has an additional implication: the best
ML technique to use in a given context may result from experimen-
tal analyses performed after the requirements engineering phase.
Relying on a higher-level task classification can better inform how
such investigations should be performed. Hence, we argue that
such a design choice better fits the ML engineers’ needs. On the
contrary, feeding and experimenting the framework with the USs
coming from the augmented taxonomy was key to understand the
robustness of the framework. Those USs were based on different
levels of granularity, hence simulating multiple conditions arising
in reality which might challenge the capabilities of our framework.

Figure 4 overviews the main steps of the proposed approach. A
US represents the input of ReFair. This is preprocessed with the
aim of producing a word embedding representation of the elements
of the US. Those embeddings will feed two different ML models:

the first will be responsible for classifying the application domain
of the US, while the second will classify the most likely ML task(s)
that may be employed to implement the US. The outcomes of these
two models will then be used to map the classified application
domain and ML tasks to the corresponding sensitive features. These
will be finally presented to the user. The next sections provide more
details on each of the steps of our approach.

4.1 User Story Preprocessing
The first step of ReFair allows to produce a 𝑁 -dimensional space
representation of the input US [33]: in turn, such a representation
enables the extraction of features out of the text that natural lan-
guage models can use for classification purposes. In other terms,
this step allows ReFair to transform the text contained within a US
into a real-valued vector that can be used in the following steps. Our
framework supports multiple word embedding techniques such as
TF-IDF [59], BERT [20],Word2Vec [42], FastText [7], and GloVe
[47]. The assessment reported in Section 5 aimed at experimenting
with those techniques and identifying the best one.

4.2 Classification Analysis
The word embeddings are then taken as input by the classification
analysis modules of ReFair. This comprises two main components:

Application Domain Classification. This component is re-
sponsible for classifying the most likely application domain of the
US among the 34 domains available in the ontology.

We have modeled the domain detection problem as a multi-class
classification task [32], where (1) the features are represented by the
real-valued vector of the word embeddings and (2) the classification
labels correspond to the application domains of the augmented
taxonomy. Our framework supports 25 ML algorithms that make
different assumptions on the underlying data as well as have dif-
ferent advantages and drawbacks in terms of execution speed and
overfitting. For instance, ReFair provides users with the possibil-
ity to run probabilistic algorithms, e.g., Gaussian Naive-Bayes,
entropy-based classifiers, e.g., Random Forest, semi-supervised ap-
proach, e.g., Label Propagation, and others. Our online appendix
[1] reports the complete list of ML techniques supported.

Machine Learning Tasks Classification. This is responsible
for classifying the ML tasks likely to be employed when imple-
menting the US. We have modeled the problem as a multi-label
classification task [57], as a US may be operationalized using multi-
ple ML techniques. For instance, the term “artificial neural network”
may refer to tasks of regression, classification, clustering, and more.
As such, we designed the framework to be conservative enough and
identify all the potential ML tasks that may lead to unfairness. From
a practical perspective, this choice may allow the users to receive a
larger set of sensitive features, hence favoring recall over precision:
this was done on purpose, as we preferred to provide users with
actionable feedback that might be later interpreted rather than with
a more restrictive set of sensitive features that may have overlooked
some relevant pieces of information. The implications of these de-
sign choices are later analyzed as part of the empirical study. In
this case, the features are represented by the real-valued vector of
the word embeddings, while the classification labels consist of the
high-level ML tasks of the augmented taxonomy.

As for the actual classification, ReFair supports established
multi-label techniques such as Binary Relevance (BR) [36],Classi-
fier Chain (CC) [50], and Label Powerset (LP) [55].We rigorously
tested these techniques with popular ML algorithms such as Lo-
gistic Regression (LR), Random Forest (RF), Gaussian Naive
Bayes (GNB), Linear Support Vector Classification (LSVC),
K-Nearest Neighbors (KNN), and Decision Tree (DT). We did
not consider the analysis of more advanced ML solutions, e.g., Deep
Learning (DL) neural networks, as (1) shallow ML classifiers are
more interpretable and explainable, possibly providing ReFairwith
an additional, relevant feature that would increase its practical us-
ability; (2) DL models may not be required if the performance of
shallow ML classifiers are already high.

4.3 Sensitive Features Recommendation
The application domain and ML tasks classified in the previous step
are finally used to recommend sensitive features. ReFair exploits
the base ontology [23] to identify the sensitive features connected
to both the application domain and ML tasks concerned with the
the classified domain. The intersection of those sensitive features
represents the final outcome of the framework, i.e., the outcome
comprises the set of sensitive features relevant when jointly con-
sidering the application domain and the learning tasks.
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Figure 5: ReFair: Running Example.

4.4 Prototypical Implementation
We released the source code of the prototypical implementation of
ReFair in our online appendix [1]. For the sake of understandability,
Figure 5 reports a running example of our framework, which shows
how it could recommend sensitive features for the US generated in
Figure 3a. The example shows a successful classification from the
empirical study discussed later in the paper, in partucular the results
obtained when configuring the framework with (1) the XGBoost
classifier for the domain classification and (2) Linear Support
Vector Machine for the ML tasks classification. The approach
correctly classifies Finance & Marketing as domain and identifies
Anomaly Detection, Clustering, and Representation Learning as pos-
sible ML tasks through which the US may be implemented. The
classification of these tasks is consistent, as these are widely ap-
plied in the context of financial applications [23]. Finally, for each
ML task, ReFair maps relevant sensitive features, recommending
working activity, age, gender, geography, sex, and race as the set of
sensitive features to consider in the subsequent implementation
steps of the US. The recommendations can be considered both com-
plete and consistent, as these are the well-known attributes that
should be considered while developing financial ML applications.

5 EMPIRICAL EVALUATION
The goal of our study was to assess ReFair, with the purpose to
measure the extent to which it may support fairness requirements
engineering. The perspective is of researchers and practitioners. The
former are interested in assessing the viability of automatically de-
tecting sensitive features from User Stories. The latter are interested
in assessing whether it may be actually employed in practice.

Specifically, we first focused on the capabilities of ReFair in
classifying application domains and machine learning tasks. These
are indeed the two aspects that determine the final accuracy of
the recommendations provided, i.e., if ReFair correctly classifies
application domains and machine learning tasks, the outcome will
be correct by definition, as the sensitive features recommended
would directly map onto the base ontology reporting the ground
truth on the fairness attributes to consider in that domain and for
those ML tasks. We formulated two research questions (RQs):

ü RQ1. To what extent can ReFair classify ML-specific application
domains from User Stories?

ü RQ2. To what extent can ReFair classify ML-specific tasks from
User Stories?

After assessing the classification components of ReFair, we
moved toward the evaluation of the sensitive feature recommender.
When either the application domain or the ML tasks are misclassi-
fied, ReFairmay recommend sensitive features that are inconsistent
for a given US. Hence, we formulated a third research question:
ü RQ3. To what extent can ReFair recommend sensitive features
from User Stories?

In terms of reporting we followed the guidelines by Wohlin et
al. [64], other than theACM/SIGSOFT Empirical Standards.5 The con-
text of the study was represented by the synthetic dataset described
in Section 3. For each application domain, the dataset contained
365 USs which were used to experiment with our framework.

5.1 Addressing RQ1: The ReFair Application
Domain Classification Performance

We addressed RQ1 by experimenting with the word embeddings
and domain classifiers supported by our framework.

Experimental Setting.We designed an empirical study to iden-
tify the best classifier among the 25 ML multiclass classification
algorithms available within ReFair. Such an experiment was per-
formed through the use of Lazy Predict,6 a Python library that
facilitates the comparison of multiple models and does not require
manual parameter tuning. All the algorithms were evaluated using
the five word-embedding techniques listed in Section 4.1. Specif-
ically, the US dataset was first represented by using the i𝑡ℎ em-
bedding technique considered. Afterwards, we applied a ten-fold
cross validation [26] to split the dataset in ten folds and let Lazy
Predict assess the performance of each of the 25 algorithms on each
fold. To effectively manage the computational demands associated
with testing multiple combinations of word embeddings and ML
techniques, we represented USs using a fixed vector of 100 tokens,
independently from the size of the requirements or the embedding
method used. This approach reduced the overall computational time
required for testing while keeping the results informative andmean-
ingful. The results were then analyzed using pandas [62], which
allowed us to group them and obtain the average performance for
all models over all folds. As the experiment focused on domain
detection, which we modeled as a multiclass classification task, we
used F1-Score and accuracy as evaluation criteria [49]. F1-Score is a
commonly used metric for evaluating the performance of multiclass
classification models [59]. It is computed as the harmonic mean
of precision and recall, which provides a balance between these
two measures, where precision measures the proportion of cor-
rect positive predictions among all positive predictions and recall
measures the proportion of correct positive predictions among all

5Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given the nature
of the study and the standards currently available, we employed the “General Standard”,
the “Data Science”, and the “Engineering Research” guidelines.

6The Lazy Predict library: https://github.com/shankarpandala/lazypredict

https://github.com/acmsigsoft/EmpiricalStandards
https://github.com/shankarpandala/lazypredict
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Comparison of selected embedding techniques for the Domain Detection classifier.
TF-IDF BERT Word2Vec FastText Glove

Model F1-Score Accuracy Model F1-Score Accuracy Model F1-Score Accuracy Model F1-Score Accuracy Model F1-Score Accuracy

ET 0.80 0.80 XGBC 0.98 0.98 CCCV 0.91 0.91 SVC 0.94 0.94 CCCV 0.91 0.91
SVC 0.80 0.80 BC 0.98 0.98 LR 0.91 0.91 CCCV 0.94 0.94 LR 0.91 0.91
CCCV 0.80 0.80 DT 0.98 0.98 LSVC 0.90 0.90 LR 0.94 0.94 LDA 0.90 0.90

Table 1: Domain classifier selection - Experimental Results
ET = Extra Trees, SVC = Support Vector Classification, CCCV = Calibrated Classifier CV, XGBC = XGB Classifier, BC = Bagging

Classifier, DT = Decision Tree, LR = Logistic Regression, LSVC = Linear SVC, LDA = Linear Discriminant Analysis

actual positive instances. Accuracy measures the overall proportion
of correct predictions, regardless of the class. It is computed as the
ratio of correctly classified instances to the total number. At the end
of this analysis, the best model was subject to a hyperparameters
fine-tuning step to obtain the model that best fits the supplied data.
Once we had identified the best performing classifier, we further
refined it by running the RandomizedSearchCV algorithm: this is
an automated configuration instrument provided by Scikit-learn,
which involves testing random combinations of values from a range,
as opposed to predefined values in classical Grid Search. This al-
lowed us to (1) understand whether the results obtained through
LazyPredict were reliable and (2) carry out another round of cross-
validation, consolidating the results obtained and preventing them
from being facilitated by the split used for the previous analysis.

Experimental Results.We evaluated 125 combinations of word
embeddings and classification algorithms. While the detailed re-
sults for all models are available in our online appendix [1], Table 1
presents the top-3 models for each embedding technique in terms
of accuracy and F1-Score. Notably, the XGB Classifier [16]—an
implementation of gradient-enhanced decision trees designed for
speed and performance—using BERT as word embedding emerged
as the best-performing model, reaching 98% of F1-Score and accu-
racy. Two other models, i.e., Bagging Classifier and Decision
Tree, also achieved the same performance, highlighting the effec-
tiveness of BERT as word embedding for the textual representation
of our task. Nonetheless, the combination of BERT and XGB Clas-
sifier provided the best compromise between performance and
efficiency: hence, we deemed this model as the best one resulting
from the application domain model selection step.

In the second step, we configuredXGBClassifier by considering
max-depth, learning-rate, subsample, and n_estimators as hyperpa-
rameters. The best configuration was the following: {learning-rate:
0.087, max-depth: 3, n-estimators: 80, subsample: 0.924}. The per-
formance of the XGB Classifier were similar to those obtained
without hyper-parameter configuration. On the one hand, this con-
firmed that we could classify the application domain within USs
with high accuracy. On the other hand, our findings suggest that
an additional, possibly costly fine-tuning refinement would not be
strictly required to obtain high performance.

¤ Summary of the Results.We empirically evaluated 125 ML
algorithms and word embedding combinations to address RQ1.
The combination of BERT andXGBClassifier exhibitedAccuracy
and F1-Score close to 98% in the domain detection task.

5.2 Addressing RQ2: The ReFair Machine
Learning Tasks Classification Performance

Similarly to what done previously, we addressed RQ2 by experi-
menting with the word embeddings and machine learning tasks
classification mechanisms supported by our framework.

Experimental Setting. As described in Section 4.2, the classifi-
cation of the ML task associated to a fairness-critical application
domain may be challenging, as multiple tasks can be used during
the development of ML-enabled systems. As such, we modeled
a multi-label classification problem, wherein USs may relate to
multiple ML tasks. We leveraged Scikit-multilearn [55], a BSD-
licensed library for multi-label classification that is based on the
well-known Scikit-Learn ecosystem. We exploited MultiLabel-
Binarizer [55] to transform the output to be predicted. Unlike a
single value indicating the class to which it pertains, in this case,
the output is represented by an array of values indicating which
classes the US belongs to. Similarly to RQ1, we experimented with
each combination of multi-label technique, classification model,
and word embedding method considered by ReFair, by performing
a ten-fold cross validation [26]. The results were examined using
pandas, which allowed us to cluster the results and derive the mean
performance for all possible combinations across all folds. As eval-
uation metrics, we considered F1-Score and Hamming Loss values
for every combination. Both metrics have been widely adopted in
the context of multi-label classification problems, especially when
the number of labels is large [57]. In particular, the F1-Score was
computed for each label separately, taking the average as a final
performance indicator. As for the Hamming Loss, this measures
the fraction of misclassified labels. It was computed as the average
number of labels that were incorrectly predicted for each instance.

Experimental Results. Overall, we empirically evaluated 90
combinations of word embeddings and ML task classification al-
gorithms. While the complete results are in online appendix [1],
Table 2 reports the top-3 performing models for each embedding
technique. The combination of Glove, Label Powerset, and Lin-
ear Support Vector Classification obtained the highest F1-
Score and the lowest Hamming score. Nevertheless, unlike RQ1,
where the word-embedding technique impacted the classification
results, in this case, we discovered that the multilabel classification
technique made the difference, achieving excellent results regard-
less of the word-embedding technique. More particularly, Label
Powerset, in combination with different classification algorithms,
achieves results above 70% in terms of F1-Score with a Hamming
Loss of at most 15% in the worst case, even with different techniques
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Comparison of selected embedding techniques for ML Task Detection classifier.
TF-IDF BERT Word2Vec FastText Glove

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

LP + RF 0.88 0.06 LP + DT 0.86 0.07 LP +
LSVC

0.86 0.07 LP +
LSVC

0.81 0.09 LP +
LSVC

0.90 0.05

LP + DT 0.82 0.09 LP + RF 0.84 0.08 LP +
GNB

0.76 0.12 LP +
GNB

0.81 0.10 LP +
GNB

0.72 0.15

BR + RF 0.80 0.09 BR + DT 0.78 0.11 BR +
KNN

0.68 0.15 BR +
KNN

0.74 0.12 BR +
KNN

0.67 0.15

Table 2: Machine Learning Task classifier selection - Experimental Results

for text representation. The best results were finally obtained by
combining Label Powerset, Glove, and LSV: the F1-Score was
slightly above 90%, while the Hamming Loss scored 5%.
¤ Summary of the Results. We assessed 90 combinations of
multilabel techniques, ML algorithms, and word-embedding meth-
ods. The combination of Label Powerset, Glove, and Linear
Support Vector Classification reached an F1-Score higher
than 90% and Hamming Loss of 5% on the ML tasks classification.

5.3 Addressing RQ3: The ReFair Sensitive
Feature Recommendation Capabilities

We addressed RQ3 by comparing the output of ReFair against an
oracle reporting the actual set of sensitive features to be provided.

Experimental Setting. To address RQ3, we first built an or-
acle reporting the correct set of sensitive features for each US of
our dataset. This was done by exploiting the base ontology [23].
As explained in Section 3.2, it provided sensitive features for each
application domain and ML task: as the considered USs were con-
cerned with an actual application domain and ML task, we could
use the base ontology to label each US with the corresponding
set of sensitive features. Afterward, we compared such an oracle
against the recommendations of ReFair. This evaluation allowed
us to measure how much the misclassifications assessed in RQ1
and RQ2 altogether influenced the capabilities of our framework,
hence providing a final assessment of the support that ReFair may
provide during requirements engineering. We computed the MoJo
distance [58] as the evaluation metric, which is a widely accepted
method to measure the distance between two partitions of the same
set. This metric ranges from 0 (indicating a completely identical
set) to 1 (representing two completely different sets). It is based
on the number of “moves” required to make the two compared
sets identical. Here, a “move” refers to either shifting a single data
point from one cluster to another or swapping the cluster assign-
ments of two data points. To evaluate the distance between the set
of features recommended by ReFair and the oracle for each US,
we employed a specific MoJo variant that relies on the Jaccard’s
and the Mean sets overlap indexes [40]. In addition, we analyzed
the results from a more qualitative standpoint by computing the
amount of sensitive features erroneously recommended by ReFair:
to this aim, we leveraged the token-level Levenshtein distance [41],
considering each token as a sensitive feature.

Experimental Results. The average MoJo distance computed
by comparing all the sets of sensitive features against the oracle

reached 0.04, meaning that the output of ReFair was just 4% far
from the ideal one. This result indicates that the misclassifications
in terms of application domain and ML task have a marginal impact
on the overall capabilities of ReFair, hence making it a potentially
suitable instrument to support requirements engineering activities.
Going deeper, the Levenshtein distance [41] analysis revealed that
ReFair acted as a perfect recommender on 11,969 USs (97%). Of the
remaining 432 (3%), in 41 cases (less than 1%) the feature sets of
ReFair and the oracle differed by only 1 feature, 70 (0.6%) differed
by 2 features, and 321 (less than 3%) differed by more than 2 features.
By analyzing the latter cases more closely, we observed that (1)
these would have still led ReFair to provide some support in a real
case scenario, as the set of recommendations were partially correct,
i.e., wrong recommendations were up to 52.5% of the recommenda-
tions provided by ReFair; and (2) they were mostly due to specific
application domains, e.g., Health, and ML tasks, e.g., Classification
which were those more often misclassified. This suggests that fur-
ther improvements of ReFair could revolve around the addition
of targeted data samples or the application of data augmentation
methods able to provide the framework with a more consistent
knowledge. We report additional analyses into the capabilities of
ReFair per application domain and ML task as part of the technical
report that accompanies this submission [1].
¤ Summary of the Results. The MoJo distance showed a near-
perfect match (0.04) between the set of sensitive features recom-
mended by ReFair and by the oracle. Our framework acts as a
perfect recommender in 90% of the cases, providing mostly wrong
recommendations in just 5% of the cases.

6 THREATS TO VALIDITY
Our study suggested that ReFair may represent a valuable instru-
ment, yet various aspects might have biased the conclusions drawn.

Threats to External Validity. A first threat is represented
by the user story format employed in the study. While this pos-
sibly limits the applicability of ReFair, previous studies showed
that these are widely used in the requirements engineering of ma-
chine learning-enabled systems [61]. As part of our future research
agenda, we plan to generalize the framework to other formats.

Our framework was built on top of the current knowledge on the
fairness-critical application domains and machine learning tasks
[21, 23]. As such, its application is limited to such a knowledge.
However, ReFair was designed to be easily extended; the source
code is publicly available so that researchers can build on top of it.
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The generalizability of the results might have also been threat-
ened by the granularity of the USs automatically generated and,
more in general, by the use of synthetic USs to experiment with
ReFair. As explained in Section 3.3, we accounted for the liberty
developers have in real-case scenarios [34], hence enabling the gen-
eration of both solution- and problem-oriented USs that might have
properly simulated a realistic use case for ReFair. Nonetheless,
further investigations into the generalizability of these USs should
be pursued. To partially mitigate such a threat to validity and pre-
liminarily assess how ReFair may work in a realistic environment,
we conducted a qualitative experimentation involving real-world
machine learning engineers. The goal was to understand the ca-
pabilities of our framework when run against manually-written
requirements specifications. We involved 20 machine learning en-
gineers from our contact network and asked them to develop re-
quirements specifications that could be later employed to assess the
soundness of our framework. The participants had between two
and five years of professional experience, had knowledge on both
software engineering and artificial intelligence. We involved them
through e-mails, by asking for a volunteer participation.

Upon confirmation of their participation, we sent them a link to
an online questionnaire which comprised three sections. The first
presented the informative consent: we clarified that the answers
would have kept anonymous to preserve privacy and that their
responses would have been used for a research submission. The
second aimed at collecting demographic data. The third proposed
a problem statement concerned with a specific machine learning
domain among those investigated in this study [23]. For instance,
one of the problem statements revolved around the definition of
a machine learning-based software system able to classify cancer
types based on genomic data. While each participant was assigned
to a problem statement pertaining to a different domain, we could
not assess all 34 domains considered in the study because of the
lack of participants. The problem statements were crafted by the
first author of the paper, who elaborated them with the help of
online resources and existing projects, in an effort of producing
realistic cases to propose to the participants. The full set of problem
statements are available in our online appendix [1].

Participants were asked to carefully read the problem statement
they were assigned to and produce up to ten requirements involving
the machine learning solutions that may be employed in the context.
We gave them ten days to deliver, collecting a set of 119 require-
ments that could be classified by ReFair, which was configured
according to the empirical results presented in Section 5.

We could not compute precise performance metrics because of
the unavailability of a ground truth for these requirements, yet
we manually went through a qualitative analysis and assessed
whether these might have been considered similar or meaning-
ful. We noticed that the major differences between the manually-
and automatically-generated USs were due to two aspects. On the
one hand, the participants’ knowledge on the problem statements
presented: when participants were not familiar enough with the
domain, they indeed developed more generic USs that were hard
for ReFair to correctly handle. On the other hand, the machine
learning engineers’ experience with requirements engineering: we
noticed that more experienced practitioners were able to develop
higher-quality USs that better characterized the elements to be

implemented, hence allowing ReFair to properly classify potential
sensitive features. In conclusion, the qualitative investigation con-
firmed the value of ReFair, yet discovered the potential boundaries
that may affect its capabilities, namely domain familiarity and expe-
rience of the practitioners that engage with the framework. As part
of our future research agenda, we aim at performing larger-scale
studies that might better assess the differences between manually-
and automatically-written USs, other than the implications for the
classification performance of ReFair.

Threats to Construct Validity. Our study was designed to take
the context-dependent nature of software fairness into account, i.e.,
some sensitive features might be considered as such depending on
the context: as such, we trained and tested ReFair on USs coming
from a large variety of fairness-critical domains [23]. Additional,
hardly operationalizable external factors, e.g., laws and regulations,
may influence the identification of sensitive features: as any rec-
ommendation system, ReFair must be considered as an assistant
rather than a tool to replace the requirements engineer by providing
insights that might be relevant for the development of a certain US.

As for the synthetic dataset, we built it on top of the existing
knowledge on requirements engineering [54, 61] and software fair-
ness [23], favoring the generation of USs having different levels of
granularity [34] and employing a reliable Large Language Model
like ChatGPT, which we inquired only after experimenting with
multiple prompts. The internal validation of the dataset quality,
other than the external validation conducted with practitioners,
increased our confidence on its validity and suitability for our pur-
poses. Replications of our study on real-world datasets would still
be desirable and part of our future research agenda.

We built a prototypical implementation of ReFair by experi-
menting with a wide set of shallow machine learning algorithms
to classify application domains and tasks within user stories. We
did not make use of advanced artificial intelligence solutions, e.g.,
deep learning algorithms. While they might have offered additional
insights into the capabilities of our framework, we favored the
analysis of simpler models which are less demanding in terms of
computation costs and training data, other than being more inter-
pretable. The high classification performance obtained by those
simpler models increased the confidence of our design choices, even
though we plan to investigate the contribution of more complex
classification models as part of our future research agenda.

Threats to Conclusion Validity.We assessed the classification
components of ReFair by experimenting with multiple classifiers
and word embedding techniques, computing well-established met-
rics, i.e., F1-Score and accuracy, that have been widely used to
comprehensively assess multiclass and multilabel classification al-
gorithms [57, 59]. As for the sensitive feature recommender, we
defined evaluation metrics that could well represent the capabilities
of ReFair in recommending appropriate sensitive features.

Another threat concerns the use of the same dataset to train and
test our approach. In this respect, there are three considerations to
make. First, we had no alternatives than using the synthetic dataset,
given the lack of alternatives in literature. Second, we made sure
not to mix training and testing data by performing a ten-fold cross
validation: in each iteration one fold was retained as the test set and
left untouched, while the remaining folds were used for training.
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By doing that, we ensured the ReFair was always experimented
against unseen data. Last but not least, after addressing our re-
search questions relying on the synthetic dataset, we performed
a more qualitative investigation into the performance of ReFair
on a manually-generated dataset of USs. This qualitative analy-
sis was explicitly designed to verify how ReFair may work when
applied on a dataset different than the one used for training. The
conclusions drawn in our qualitative study still pointed out the
promising performance of our approach: of course, we are aware
of the need for further, larger-scale evaluations of ReFair but, at
the same time, we believe that the results provided so far represent
a valuable contribution to the research community.

7 CONCLUSION
We proposed and assessed ReFair, an automated framework to
support fairness requirements engineering. Our findings showed
that ReFair can accurately classify sensitive features from USs.

Our future research agenda includes further experimentation
on ReFair, including (1) a larger-scale qualitative and industrial
assessment of the framework; (2) extensions making the framework
independent from the format used to develop requirements spec-
ifications; and (3) the integration of ReFair with bias mitigation
strategies applied in later development stages. Also, we plan to
conduct further investigations into the generalizability of the auto-
mated generation of USs for requirements engineering research.
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